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Particles and shadows: a generalized path-integral approach 
to non-relativistic field theories 

R Rosenfelder 
Paul Scherrer Institute., CH-5232 Villigen PSI. S w i a r h n d  

,Received I I  January 1994 

Abstract. Lultinger and Lu have derived a variational method for representing the Yukawa 
interaction of bosons and fermions in non-relativistic field theories by ageneral potential between 
fermions and fictitious p d c l e s  ('shadows'). In the present work, this is considerably improved 
by applying Jensen's inequality only once and representing the kinetic term in the path-integral 
average as a quantum-mechanical N-body problem using the replica technique. Various we&- 
and strongcoupling approximations as well as variational bounds for this term are discussed. 

1. Introduction 

Many non-relativistic systems in solid state and nuclear physics can be described by field- 
theoretical models of fermions interacting with bosons. The Hamiltonian of such a system 
of A fermions with mass tn usually has the form 

A 

H = $ + /d3kw(k)at(k)a(k) + J 01k/ $[f(k)at(k)e-"'" +HC] (1) 
i=t  i=1 

when the interaction is assumed to be spin-independent. Here a(k )  and at@) are 
annihilation and creation operators for the bosons (phonons or mesons), w(k) denotes the 
boson frequency and 01 is a dimensionless coupling constant between fermions and bosons. 
For the well known polaron problem [ 1-41, the function f ( k )  is given by 

For the meson-nucleon problem see [5,6].  In the following I will only consider the zero- 
momentum self-energy of a single fermion (A = 1) interacting with any number of bosons. 

Feynman [7] observed that the bosons can be eliminated analytically since they enter, 
at most, quadratically in the Hamiltonian (1). In the path-integral formulation, one obtains 
an effective action for the fermion which, for large Euclidean time p ,  is given by 

With the elimination of the bosonic degrees of freedom, one is left with a one-body effective 
theory which, however, is highly non-local in time due to the retardation effects. This 
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3524 R Rosenfelder 

prevents a Hamiltonian formulation and any further exact analytical treatment. Instead, 
Feynman used a variational formulation for the partition function 

based on Jensen’s inequality (exp(-S)) 2 exp(-(S)). This yields an upper limit for the 
ground-state energy (self-energy at zero momentum) 

where Eha, is the energy corresponding to some suitably chosen trial action S,,! and the 
average is performed with respect to &al. 

The trial action proposed by Feynman for the polaron problem is that of a retarded 
harmonic oscillator and in the usual polaron units (m = o = 1) it is given by 

where U and w are variational parameters. They are determined by minimizing equation (5) 
which becomes 

e-‘ 
[ w 2 r + ( u 2 - w 2 ) ( 1  -e-*r)fu]1f2’ 

3 
4u 

Eo < EF = -(U - w )  (7) 

Feynman’s approach is the best analytical approximation which works for both weak and 
strong coupling. Recent precise Monte Carlo calculations [SI indicate that the maximal error 
occurs for large a; from the known strong-coupling expansions, one may then estimate that 
the Feynman ground-state energy deviates less than 2.2% from the exact value in the whole 
range of coupling constants. 

2. Luttinger and Lu’s approach and improvement 

The ansatz (6) was motivated [7,9] by the fact that it results from ‘integrating out* a fictitious 
particle with mass 

and coordinate R which couples harmonically to the electron 

V ( R  - x) = ; M w 2 ( R  - x ) ~ .  (86) 

This ‘shadow’ particle simulates the cloud of phonons around the electron in the crystal. 
Luttinger and Lu (LL) [ 101 have generalized this idea to an arbitrary potential V(R- x) 

and have shown that for large coupling constants the best effective potential is not harmonic 
(as in Feynman’s approximation) but Coulomb-like. In this way, they obtained the exact 
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strong-coupling limit for the ground-state energy due to Pekar [ 111 and Miyake [ 121. Their 
method is based on multiplying equation (4) by 

where 

is the action of a shadow particle coupled to the fermion. They then invoked again Jensen’s 
inequality for the combined-path integral and determined the optimal-potential function V ( r )  
and mass parameter M .  An important observation made by LL is that the non-Gaussian 
path integrals, which necessarily occur in their approach, can be evaluated by solving the 
corresponding quantum-mechanical problem (i.e. the Schrodinger equation). For example 

where 

is the two-body Hamiltonian in centre-of-mass and relative coordinates with reduced mass 
LL = m M / ( M  + m).  

However, applying the inequality twice, i.e. to particle and shadow, leads to a bad 
approximation except for large coupling constants. This is best seen for a harmonic 
interaction where U obtain nearly the same result (7) as Feynman but with the first term 
(which I will call the ‘kinetic’ part) being replaced by 3u/4. This leads to much more 
repulsion at small CY: instead of Feynman’s (U - w ) * / u  = U(CY*) LL only have U = U(1). 
The difference does not matter at large coupling constants when U >> UJ but is essential 
at low and intermediate coupling. As a consequence, Em (in the so-called ground-state 
approximation) is only better than EF for 01 > 34 despite the fact that an arbitrary potential 
V ( r )  has been allowed for the variational principle. This basically renders the LL approach 
a complicated strong-coupling expansion. 

To improve the U treatment and to exploit the full flexibility of a general potential, it 
seems necessary to use Jensen’s inequality only once. This can be accomplished by defining 
the trial action directly as a result of the elimination of a shadow particle 

exp(-Swiat[zl) = D[Rl exp(-So[zI - T [ R  -XI). (13) 

Note that this is translationally invariant and reduces to Feynman’s ansatz (6) for a harmonic 
interaction. One then has to evaluate the individual averages in equation (5).  

The simplest term is the trial energy Eda!:  using equation (1 la) one immediately obtains 

s 

E ~ a i  = ff) ( 14) 

where cf) (I suppress the superscript in most of the following) is the lowest eigenvalue of 
the two-body Hamiltonian (12). Note that, after separation of the centre-of-mass motion, 
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this reduces to the determination of the lowest energy of a particle of mass p in an (up to 
now) arbitrary potential V(r)-a problem which can be solved easily by standard numerical 
methods. 

The evaluation of (SI), proceeds similarly using the equivalence 

/ D[~IDIRIO~ ( f l ) ~ ? ( t ? )  exp(-So[zl- T[R - 21) 

= COnStant X T r ( 7 ~ , 1 H ( q ) ~ ) Z H ( r z ) e - B ~ z )  ( 1 W  

where 7 is the time-ordering symbol and & f )  denotes the corresponding Heisenberg 
operator. A straightforward evaluation yields the same expression as that given by LL 

Note that here knowledge of the full specmm of f?z is needed which makes the numerical 
evaluation of equation (15) for a general potential a major task. However, as observed by 
LL, each term in the spectral sum gives a positive contribution so that one still has an upper 
bound on the energy if only a finite number of states are retained. In the strong-coupling 
limit the ground-state contribution already leads to the exact P e h  result. 

The last average to be evaluated is (SO - SWv)sm. Although this is nearly trivial 
for a harmonic interaction, i.e. in Feynman's approximationt. it turns out to be the most 
challenging problem for a general potential and it is the major topic of this work. This 
is due to the fact that the hid action S M ~  appears directly for the first time and not only 
in the form exp(-Shd) in which it can readily be transformed into quantum-mechanical 
expectation values as in equations (11). Using definition (13) for the trial action, an 
alternative formulation of the problem is to evaluate the non-standard path integral 

1 ( S O - S ~ ~ S ~ ~  = DD[zlD[Rl exp(-S~[zl-TlR - XI) log D[Rd exp(-T[R~ - 21) s 

3. Replicas 

Obviously it is the logarithm in equation (16) which prevents a formulation in terms of 
stationary quantum mechanics as in the previous terms. A similar problem arises in the 
linked-cluster theorem which states that log Z is given by the sum of connected diagrams. 
An elegant method to prove this theorem is the replica technique [13] based on the 
representation 

a N  logZ= lim -2 . 
N-tO aN 

t In particular. if the Fourier path-integral form is used [E]. 
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For integer N ,  Z N  can again be represented as a quantum-mechanical expectation value 
with a Hamiltonian containing N ‘replicas’ of the original particles. Applying this trick to 
the evaluation of (SO - Seia,). one obtains, after renumbering N + N + 1, 

where the ( N  + 1)-body Hamiltonian is given by 

1 N 

p2 2m i = 1  
&+I = - + I + V(x - Ri) 

This is similar to an atom consisting of N electrons which have no interaction among 
themselves but only with the nucleus (which in our case is the single fermion). Transforming 
to the centre-of-mass (which is not the ‘nucleus’) and to coordinates relative to the ‘nucleus’ 
one obtains [14,15] 

The last term-the so-called Eckart term-is a genuine two-body interaction and is 
responsible for the coupling among the particles. Otherwise, the ground-state energy EN 
would be just the sum of single-particle energies €0 and the quantity 

would vanish identically. In the following, S2 will be called the ‘kinetic’ term as it is the 
part of the variational bound for the ground-state energy 

Eo < 0 + (SI)S”,&, (22) 

which does not depend explicitly on the coupling constant a. It is precisely this insufficient 
bound for 0 which makes the more general approach of LL inferior compared with 
Feynman’s. By using the replica trick, the problem has now been transformed into 
determining the chemical potential p = aEN/BN at N = 1 with the Hamiltonian (20). 
Equivalently, from equation (21), one has to determine the energy per particle beyond the 
Hartree approximation, i.e. the correlation energy of the system. Of course, for the harmonic 
interaction (8).  this can be determined exactly by finding the normal modes [16]. The result 
is 

= Z w ( N  7. - 1) + $U-. (23) 

Using equation (8a). it is easily confirmed that this leads to the correct Feynman result 

(24) 3 2 -(U - w )  . 
4v 

Qhmonic = 

For a general potential and for small coupling constants, the kinetic term 0 can be 
calculated systematically by considering the &kart term as a perturbation. This is possible 
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Figure 1. Second-order Goldstone diagram for the kinetic term Sl with Ule E c h  term as a 
hvo-body interaction. The rules are the same as for the evaluation of the ground-state energy 
1171 except for an additional factor -(nt - I )  where nt is the number of loops. 

because, practically, the ‘nucleus’ does not move in this limit (m >> M). The simplest way 
of dealing with N bosons (which can condense) is to treat them as fermions and to assign an 
internal ‘spin’ to them with N magnetic components [131. Each loop in a Goldstone diagram 
for the ground-state energy then canies a factor N .  The particular separable form of the 
Eckart term, as a two-body interaction, leads to considerable simplifications: only an even 
number of interactions on any particle or hole line is possible due to parity conservation. 
In addition, one-loop diagrams can be dismissed for the perturbative evaluation of R since 
linear terms in N do not contribute to equation (21). 

It has already been noted that the Hamee term gives a zero contribution to R. There 
are no first-order Goldstone diagrams. In second order, the only diagram which survives is 
the one shown in figure 1 and its contribution is given by 

where p k  = (Olpla) is the*singIe-particle matrix element of the momentum operator in 
the basis of eigenstates of H2. In  third order, one finds that from the fourteen Goldstone 
diagrams for the energy [IS], only the four shown in figures 2(a)-2(d) contribute with 
relative weight-2, 1, 1 and 1, respectively. This gives 

As a check, it is useful to evaluate equations (25) and (26) for the harmonic interaction 
(8). This is very easy because only one excited p-state contributes to each sum. One finds 
s2(z) = 3(v2 - w ~ ) ~ / I ~ u ~  and R@) + S2(’) = s2(’)(1 f (U’ - w2)/2v2) which agrees with 
the exact result up to terms of 6(a3) and 6(a4), respectively. The ring diagrams shown 
in figures 1 and 2 can be summed by diagonalizing the Hamiltonian (20) in a basis made 
up by the zeroth- and first-order perturbative wavefunction. As shown in appendix A, one 
obtains 

(27) 

which is somewhat better than the perturbative result for large couplings constants: for a 
harmonic interaction it gives one half of the exact result compared with 3/8 of the exact 
result when and R(’) are added. 
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Figure 2. Third-order Goldstone diagrams for Q 

Figure 3. Schematic drawing of the pa~ticle-shadow system together with the shadow replicas as 
described by the Hamiltonian (19). The broken lines represent the potential V ( x  - R i )  behveen 
the particle and the shadows, whereas the size of the circles indicates the corresponding masses: 
(a) small coupling consrank where m >> M ;  (b )  large coupling constants for which m << M .  

However, the resummation in equation (27) is still insufficient for large coupling 
constants since it only contains particlehole interactions and leaves out particlsparticle 
interactions. In this limit the replicas become very massive and do not move much whereas 
the fermion is now the light particle. This is a situation reminiscent of the treatment of 
nuclear motion in molecules when the Born-Oppenheimer approximation applies. As is well 
known [ 191 the energy of the electrons (the fermion in our case) depends parametrically 
on the coordinates of the nuclei (the replicas) and serves as a potential for the latter ones. 
For M + CO, the ground-state energy is then the minimum of E O ( & ,  R2, . . . , RN)  with 
corrections coming from harmonic vibrations around the minimal points. As the replicas 
do not interact with each other, these minimal positions are all the same. Taking into 
account that the difference between m and p is negligible for large M, it then follows 
from equation (19) that the ground-state energy of the system is @[V -+ NV]. Using the 
Hellmann-Feynman theorem 120,141 to perform the N-differentiation we therefore obtain 
from equation (21) 
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P2 
2P 

Q €0 - (OlVlO) = (01-10) 

i.e. the kinetic term is given by the mean kinetic energy of the particle in the ground state 
of &. As shown by U, this leads to the correct Pekar limit for the self-energy at large 
coupling. However, in the LL approach, equation (28)  is used for all coupling constants, 
which is not justified as the role of heavy and light particles reverses at smaller coupling. 
This is illustrated in figure 3. 

4. Variationd bounds 

Calculating the kinetic term Q for weak and strong coupling is not very useful for several 
reasons. First, perturbative calculations can be easily performed for the full field-theoretical 
problem defined by equation (1) so that a perturbative calculation in an approximate context 
does not make much sense. In the polaron problem, the same applies for the strong-coupling 
case. It is exactly this intermediate coupling case where discrepancies exist between Monte 
Carlo calculations [ 8 ]  and approximate analytical methods [ Z l ] .  Second, by evaluating zt 
approximately, the variational bound for the self-energy is lost in most cases. 

An exception is the resummation (27) of ring diagrams which can be shown to yield 
a lower bound for Q (see appendix A). However, what really is needed for the variational 
principle (22) is an upper bound. This can be obtained in several ways. One is by 
recognizing that Q = 60 - p is the rhermodynumicul potential at zero temperature and 
mean particle number N = 1 for which well known variational bounds exist [ 2 2 , 2 3 ] .  I 
have not succeeded in finding any simple ansiitze which lead to any useful results. Another 
possibility seems to be deriving a lower bound for 

Since E ( l )  = €0 is known exactly this requires a lower bound for the ground-state energy 
such as Temple's bound [24 ,14]  

Here E = ($b1&+11$) and E1 denotes the exact first-excited-state energy of the ( N  + 1)- 
particle system. The appearance of the laner quantity, which is difficult to estimate, 
constitutes a major disadvantage of this approach. In addition, the analytic continuation 
from integer N to N + 1 in equation (29) may lead to a loss of the variational bound 
although stationarity still holds. 

Instead, it seems to be better to deal directly with the path integral (16). Using the 
concavity of the logarithmic function (or simply by looking at a plot of log x ) ,  the following 
inequality can be easily derived 

which is valid for B ,  Bed =- 0 [ 2 6 ] .  Several choices are possible for the trial-functional 
Ehd: one may choose a quadratic form in ~ ( t )  which would be exact for harmonic 
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interactions (cf 1271) but has the disadvantage of being inadequate for strong coupling. 
Instead, let us take the translationally invariant trial-functional 

B 
B , d [ R ,  r] = Cexp ( - 1 dt c ( R  - z))  (32) 

with a constant C and a potential function p to be varied. It is easily seen that the path 
integrals which occur if equations (31), (32) are used in equation (16) can be translated into 
quantum-mechanical expectation values involving the three-body Hamiltonian 

Varying the constant C gives 

n1i3 < 2 c f )  - (OlFlO) - cg' (34) 

where cf) is the ground-state energy associated with the Hamiltonian k3. In deriving 
equation (34), use has been made of the relation 

between path-integral averages and ground-state expectation values which, e.g., follows from 
equation ( 1  Ib). Variation with respect to 3 shows that for strong coupling ? + V .  In this 
case 6f) + c f )  and therefore one obtains Q < €0 - (OlVlO) which is the correct strong- 
coupling limit (28) and leads to the Pekar limit for the self-energy. For small coupling, 
however, first-order perturbation theory gives 

4 3 )  = 2€0 + (oo~u~oo) + U(U*)  (35) 

taking U pl . p z / m  - C as perturbation. This has the consequence that cancels in 
equation (34) in first order and, since it only acts on one particle, one obtains in second 
order 

Obviously the best which can be achieved by varying ? is ? = U(or2) so that it does not 
contribute to equation (36) in the order considered. Comparing with equation (25) one then 
sees that the present variational bound only gives C2 < 2C2'z) at small coupling constants. 

Although this is considerably better than LL's result it is unclear a priori whether the 
variational determination of the best potential V ( r )  compensates for this deficiency at small 
coupling constants. To answer this question, one has to minimize Q +   SI)^,, with respect 
to the potential V ( r )  which up to now was considered to be fixed: In the polaron case, it 
is well known that for small coupling the ground-state energy has the expansion 

(37) Eo = -or - call - . . . 
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and that the exact result is cz = 0.015920 whereas the Feynman approximation gives 
c: = 1/81 = 0.012346. In appendix B, it is shown that in the present approach the 
best potential is not harmonic at small coupling and that the corresponding coefficient is 
c: = (1 - 8/(3n))/12 = 0.012598. This is the same result as that obtained by Adamowski 
et al [28] and Saitoh 1291 who considered the most general quadratic trial action and 
it represents only a small improvement over Feynman’s result. In addition, appendix B 
demonstrates that an insufficient kinetic term a, such that at small coupling Q + hR(*) 
with a constant h 2 1, translates into c2 -+ &b. Thus the aforementioned factor of two in 
the variational three-body bound for Q still renders the present approach in the polaron case 
inferior to Feynman’s for IY << 1 although it will do better for larger IY since it embodies 
the correct large-coupling limit. 

Finally, I would like to mention that, in principle, one could derive better bounds by 
sharpening the logarithmic inequality (31) to 

Z+l (_)k+1 
logx < - (x - l)k 

k k= 1 

which is valid for x > 0. However, this would require solving a quantum-mechanical 
(U + 3)-body problem and thus does not seem practical beyond 1 = 0. Already the three- 
body bound (34) poses a formidable numerical problem for intermediate coupling constants. 

5. Summary 

I have given an improved description of an approximate mapping of (non-relativistic) field 
theory to many-body quantum mechanics following the work of LL. The physical picture 
associated with this approximation is simple and appealing: the cloud of bosons surrounding 
the fermion is represented by a ‘shadow’ particle which interacts with the fermion via an 
effective potential. Surprisingly enough, it is not the interaction term but the kinetic term 
in the variational principle which is the challenging part for analytic evaluation of the 
various averages. The variational bound derived for this term in the present work requires, 
in general, the solution of a three-body problem with separable two-body interactions. 
Compared with the exactly solvable case of a harmonic potential it is still inferior to 
Feynman’s ansatz for small coupling constants but eventually becomes better as it has 
the correct large-coupling limit built in. This can be traced back to the use of an additional 
inequality for the logarithmic function. As the motivation for the present study was to avoid 
the double use of Jensen’s inequality, which badly affected U’s result this outcome is not 
fully satisfactory. However, it should be kept in mind that, for small coupling constants, 
perturbation theory is available and it is at intermediate and large coupling constants where 
non-perturbative methods are badly needed. In these cases, the present variational bounds 
might yield useful results. 

The relevance of such an approach is not only that it is a very successful non-perturbative 
method in the polaron case. As the particle-shadow interaction is formulated in ordinary 
quantum mechanics, it may also be expected that spin- and isospin-dependent interactions 
(as in the pion-nucleon case) can be handled similarly. Due’to the fact that spin in a path 
integral inherently involves complex actions [30,311, I expect that the variational solutions 
for the self-energy in this case are only stationary and are no longer upper bounds for the 
true energy. Finally, I note that such ‘shadows’ have been introduced phenomenologically 
in models for the confinement of quarks in quantum chromodynamics [32]. The main 
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feature there is a non-Hemitean constant effective potential which leads to the eventual 
decay of free quarks and therefore to their non-observation at asymptotic distances. This 
may arise from the non-Abelian nature of quantum chromodynamics in contrast to the 
simple Yukawa-type field theories considered here. Needless to say that questions of gauge 
invariance, relativistic covariance and renormalization, which have not been considered here 
at all, have to be answered before progress in this direction can be made. 
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Appendix A. Summation of ring diagrams 

In order to sum the ring diagrams, I will diagonalize the ( N  + 1)-body Hamiltonian 

HN+I  = Ha + V (A.1) 

within a space spanned by the orthonormalized states 

Here Ho is the one-body part of the Hamiltonian, E") = NCO denotes the energy of the 
unperturbed Hartree state and V = Cicjpi ' p j / m  is the Eckart term. 1%) and are 
zeroth- and first-order perturbative wavefunctions, respectively, and Qo = 1 - ~Qo)(Qo~ 
denotes the projection operator which excludes the unperturbed ground state. 

As usual the ground-state energy of a two-state system is given by 

64.3) EN = I ( H c o + H I I ) - ~ ~ ( H I I  I - H C O ) ~ + ~ I H O I I ~ .  

H m = E  (0) 

For the matrix elements one finds 

(A.4) 

with 
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Only constant and linear terms in  (N - 1) are needed for the calculation of $2. By expanding 
equation (A.3) in powers of ( N  - I), one obtains 

from which equation (27) follows. The same result is obtained by a variational calculation 
with 

19) = zol*o) + &I%) (A.ll) 

as a trial function which shows that equation (A.lO) is an upper bound for the energy. 
Consequently, Qrins is a lower bound for the true kinetic term. 

Appendix E. Variational solution for small coupling 

In this section, I derive the small-caupling limit of the polaron energy in the present 
approach. This is achieved by expanding the variational bound (22) for the energy in 
powers of CY, including terms up to order d. 

We know that $2('), given in equation (25). is correct up to this order. Disentangling 
the energy denominator by a Laplace transform, it may be written as 

where 

F ( r )  = C e x p ( - t ( &  - d)I(OIPrln)I2 = (Olp,exp(-r(h - €O))P~IO) 03.2) 

is the Laplace transform of the single-particle response function associated with the 
excitation operator p r .  Rotational symmehy of the ground state has been used as well 
as the usual polaron units (U = m = 1). 

To obtain the small-coupling limit of the interaction term  SI)^,^, i t  is convenient to 
use the Fourier-transformed form of equation (15) 

where C = and An = c,, - €0 (see equation (10) of [IO]). At small coupling 
M, p = O(a) and therefore one can expand the exponential in equation (B.3). However, it 
must be realized that in this limit the radial extension of the polaron is O(CY-'/') so that one 
has to expand up to thud order. Using orthogonality and completeness of the wavefunctions 
$"(T) one then obtains 

(S,)& = -a - + f f M  + +MZy + S(CY3) 03.4) 
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with 

y = C m l ( O l r l n ) l ’  - ( O l r z l O )  = (O1rd-r - rzIo) > 0. (B.5) 

The variational energy is a function of the mass M of the shadow particle and a functional of 
the potential V ( r )  between electron and shadow. However, the mass parameter also enters 
into the wavefunctions +“ and the energies 6,. It is convenient to separate this dependence 
by scaling 

t = & r  (B.6) 

and defining 

PQ) = Iim v - and Zn = lim E , .  (B.7) a-0 (A) a-0 

Then wavefunctions and energies are independent of M 

i&(t) E (-fag + v(t))&(t) = &K). (B.8) 

Similarly, one defines 

- 
a = lim - and 7 = lim My (B.9) 

a-0 M 2  cl-0 

with M-independent (i.e. or-independent) quantities S=Z and 7. The variational bound for the 
ground-state energy now reads 

Eo[M. VI < M26 -(I - 1orM + forMlj + U(or3) (B.lO) 

and the variation with respect to M can be performed easily. The optimal mass parameter 
is 

and the energy has the desired expansion 

Eo = -CY - c2a2 t O(ff3) 

with 

cz = (1 - ?)’/(16S=Z). 

(B.ll) 

(B.12) 

(B.13) 

In or--: for the mass of the shadow partic.. to be positive, one obviously needs 7 < 1. 
Note that the coefficient cz depends inversely on fi: if, instead of a(’), the small-coupling 
expansion had been performed with kS2(’) where 1 > 1 then the coefficient cz would have 
been reduced by a factor I/A. 

The task is now to maximize c2 with respect to the potential v(t). At first sight 
this seems impossible to do analytically due to the complicated nonlinear dependence of 
wavefunctions and energies on v(6). Still, it is possible if the resulting response function 
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F ( t )  is vvied instead of the potential. This requires that the kinetic term '?Z can also be 
expressed in terms of F ( r ) .  From equations (B.5) and (B.9), one first derives 

- 2  
Y = - S m d t  & [(?(O) - (?@)I 

J ; i O  
(B.14) 

where 

G(t )  = C e x p ( - f ( %  - ~00))I(Olt~ln)l~ = (OILexp(-t(i - G ) ) t r l O )  (B.15) 
n 

is the Laplace transform of the response function associated with the (scaled) dipole operator 
e?. By means of the Heisenberg equations for the dipole operator, one immediately finds 
F ( f )  = G ( f )  and, after suitable integrations by parts, one obtains the desired relation 

Here erfc(x) is the complementary error function. Before performing the variation with 
respect to the function F:(t) ,  one should realize that it is not completely arbitrary even for 
a general local potential: expanding c(t) in powers off  one finds 

E ( t )  = (0lt;lO) - f ( 0 1 t ~ ~ ~ - ~ ) ~ ~ l 0 ) + . . . = ~ 0 1 ~ ~ l O )  - ~ t ( O l ~ t ~ , [ ~ , ~ ~ l ] l O ) + . . .  . (B.17) 

The linear term is identical to the Thomas-Reiche-Kuhn sum rule to which a local potential 
does not contribute. Evaluating the double commutator using equation (B.8). one, therefore, 
finds 

lm - c'(0) = dr F(f) = 5 (B.18) 

as constraint. The variation of c2 can now be performed with the ansae 
W 

F ( t )  = -e-lur (B.19) 2 
one obtains wmar = 3 and cTax = 1/81 which is the small-coupling limit of Feynman's 
approximation. However, one can do better by varying with respect to the full function 
F(r) under the constraint (B.18). A simple calculation yields 

and 

(B.20) 

(B.21) 

with f ( r )  being defined in equation (B.16). The integrals involving the error function can 
all be performed analytically by appropriate integrations by parts and one obtains 

c"=-(I-$)  1 
12 

Using equation (B.l l), the corresponding mass of the shadow particle is M = a/6+U(0r2) 
which agrees with the small-coupling expansion of the polaron effective mass m* N 1 t M .  
It is unclear which local potential generates F(r)m in equation (B.20) but it is certainly 
not harmonic as comparison with equation (B.19) shows. 
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